-->
-->
Fibres
Fibre is one of the most important textile terms. Fibers are the smallest part of the fabric. They are fine, hair-like substances, categorized as either natural or manufactured. Cotton, which grows on a plant, and wool, which is shorn from a sheep, are two examples of natural fibers. Manufactured fibers are created from chemicals and include acrylic, nylon, and polyester. They are produced by chemical companies, such as E.I. DuPont de Nemours & Company and Hoechst Celanese Corporation.
Yarns
The term yarn means the raw material of fabric. Most textile materials contain yarns, which are continuous thread-like strands composed of fibers that have been twisted together. (Felt is an example of a material made directly from fibers but containing no yarns). There are various types of yarn, from flat and dull to slubby and lustrous. Each one could be made from different fibers.
Fabrics
The definition of fabric is very simple. Most fabrics are made from yarns and are either woven or knitted. The companies that make fabric are called mills; Springs Industries and Milliken & Company are two of the largest mills. The range of fabric types and weights is tremendous, fulfilling a variety of consumer demands.
Dyeing and Printing
Color is usually applied to the woven or knitted fabric by either Dyeing or Printing. The term dyeing is the process for imparting a solid color to textiles (blue, green, red, etc.). The term printing is the process of imparting designs to textiles (dots, floral, stripes, etc.). The purpose is to make the fabric more appealing. These operations are performed in dye plants or pint plants, and the companies are called dye houses or pint houses.
Finishing
Most fabrics need additional treatments termed as finishes before they can be used. For example, special chemicals are used to make a fabric water-repellent and suitable for a raincoat. A special brushing machine is required to make the fuzzy surface on flannel fabrics. The processes are done in finishing plants whose facilities are most often part of dye plants or print plants. After finished fabric has been produced, it is usually used by other manufacturers to make such items as blouses, draperies, tents, or automobile tires. A particular fabric might be used for several different articles, such as a dress, a shirt, and curtains Frequently, the same fabric that is shipped to the apparel or interior furnishings manufacturer is also sold to a retail store for direct sale to home sewers.
Automation and Computer Use
As with practically every other endeavor of our lives, computers and electronic technologies have had a tremendous impact on textile-related industries and businesses. Computerization has made a difference in design, decision-making, communication, and process control in manufacturing. Feedback on consumer preferences and product sales is readily available to fiber and fabric producers, apparel manufacturers, dyers, and finishers. The computer has become a routine tool for apparel and interior designers and for product developers; and control of manufacturing processes is increasingly a job for computer programmers.
The textile and apparel industries have formed an organization called the Textile/ Clothing Technology Corporation or (TC) 2. The purpose of TC2 is to conduct research about applications of electronic technology in the textile and apparel industries and to educate executives, engineers, technologists, and educators about automated systems, their potential, and their use. (TC) 2 is funded jointly, largely by matching grants, by the industry and the federal government.
Computer-Aided Design (CAD)
Computer-aided design (CAD) in textiles is applied to the design of yarns and fabrics and to coloration. In those firms that are vertically integrated, CAD may also be applied to apparel design and manufacture. Programs allow the textile designer to develop and modify designs interactively, speeding up the process and providing electronic links to production.
Recent techniques in three-dimensional (3-D) imaging enable simulation of the actual fabric structure and texture on screen and advances in color printing allow better reproduction of the design on paper or other media. Designs can be scanned into the system and then modified or redesigned. CAD applications for knitted fabrics and garments have advanced rapidly. A variety of CAD systems that interface design and construction in the production of woven fabrics and knitted goods are currently available and in use. New technologies have also been developed to predict the drape of fabric on 3-D moving figures, integrating the fabric and apparel design stages. This involves mathematical modeling using fabric behavioral properties. The fabric’s physical characteristics are separated from the surface design so that different types of motion can be applied to any design (Gray 1994; Gray 1998). (See Figure 1.10.) This, along with the textile design capabilities described above, allows merchandisers to create “virtual samples” for customers (Ross 1998). Computer figures are also used in 3-D scanning, a development in CAD, that is moving the apparel manufacturing customization, which is the mass production of custom garments. Women’s jeans produced through such a process were first marketed in November 1994 (Rifkin 1994).