Showing posts with label Textile Physics. Show all posts
Showing posts with label Textile Physics. Show all posts

Thursday, March 14, 2013

Cover Factor of Fibre, Yarn and Fabric

-->

CONCEPT OF SIMILAR CLOTH
Fibre or raw materials of the two cloths may be same but they can differ on other factors, such as:-
i) The yarn count may be different.
ii) The ratio of yarn count in warp and weft may differ.
iii) The warp ratio of yarn spacing may differ.
iv) The average of yarn spacing may differ.
v) The weave design may differ.
vi) The amount of twist in yarn may differ.

If there is similarity in COVER FACTOR of two cloths but they differ in such points as mentioned above then they are called similar cloth.

COVER FACTOR
Cover is the degree of evenness of thread spacing. Good cover gives the effect of a uniform plane surface & it can not be obtained with hard twisted yarn. In case of woven fabric cover factor is a number that indicates the extent to which the area of a fabric is covered by warp and weft threads. For any fabric by introducing suitable numerical constants its evaluation can be made in accordance with any system of counting. It is denoted by k.

Mathematically,

        k = d / p;
where, d1 = Warp dia; d2 = Weft dia; P1 = Warp spacing; P2 = Weft spacing; k1 = Warp cover factor, and k 2 = Weft cover factor.
     
So, k1 = d1/P1    &    k2 = d2/P2
Therefore, Fabric Cover Factor =  k1 + k2.
The ratio of yarn diameter to yarn spacing, d/p, is a measure of the relative closeness of the yarns in the warp or weft of a woven fabric. This ratio also expresses the fraction of the area of the cloth covered by the warp or weft yarns. We may therefore call it the fractional cover,  i.e.
                      Fractional cover = d / p.
Substituting Peirce’s estimate of yarn diameter, d = 1/28 √N, we have 
d / p= [1/(28√N) x1/p]
 But 1/p = n, where n = threads/in., so
 d / p= n/(28√N) ……………………………… (6)
Now d/p has a value of 1.0 when the yarns are just touching. Peirce multiplied eq.(6) by 28 to eliminate the numerical constant, 28, and defined the result as the ‘coverfactor’, K.

Cover Factor, K  = n /  √N  ……………………………………………..(7)
Because we have multiplied by 28, cover factor as defined in eq.(7) has a value of 28 when the yarns are just touching. The relative yarn spacing corresponding to various cover factors are shown below:

It is usual to calculate separate cover factors for the warp and the weft. Using the suffices 1 and 2 for warp and weft, we have

      Warp Cover Factor, K1 = n1 / √N1 and

      Weft Cover Factor, K2 = n2 / √N2.

The sum of the warp and weft cover factors is known as cloth cover factor, Kc.  It is customary and more informative, however, to state the warp and weft cover factors separately. Just as twist factor enables us to compare the relative hardness of twist in yarns of different counts, so cover factor enables us to compare the relative closeness of the yarns in different fabrics.

Math related to cover factor
Compare the relative closeness of the warp yarns in the following two plain cloths; (a) 16s cotton; 50 ends/in; and (b) 36s cotton; 84 ends/in.

We have the cover factor for cloth (a), K1 = 50 / √16   = 12.5.

And for cloth (b) cover factor, K2 = 84 / √36   = 14.0

So the ends are more closely spaced in cloth (b) than in cloth (a)

MATH:- Calculate the warp and weft cover factors for the following fabric: 60 denier nylon x 48s worsted; 96 x 72.

      60 denier = 5315/60 = 88.57s cotton count.
So, K1 = 96 / √88.57   = 10.2
       40s worsted = 48 x 560/840 = 32s cotton count.
So, K2 = 72 / √32   = 12.7

GENERAL FORMULA FOR CALCULATING COVER FACTORS
   Indirect systems                                              direct systems.

      K = cn/ √N                                                    K = cn √N

Where N is the yarn number in the particular system.


System                Value of c                          System          Value of c

Cotton                     1.0                                     Denier        0.01375
Worsted                  1.228                                 Tex             0.04126
Linen lea                 1.667                                 lb/spdl        0.2422

MATH: Calculate the cover factor corresponding to 80 threads/in. of 100 denier. 
From the table constant for the denier system is  0.01375.

Therefore, K  = 0.01375 x 80 x √100  = 11.0

MATH: How many threads/in. of 5 tex nylon are required to give the same cover factor as 90 threads/in. of 2/100s cotton?

Since the equivalent singles count of 2 /100s is √50 s.

Therefore,

                            K  = 90/ √50.

So, K = 12.7  = 0.04126 x n √5
 Therefore  the number of threads required

n=12.7/0.04126 x √5 = 138 threads / in.         

Thus required thread/in is 138 of 5 tex to give the same cover factor as 90 threads/in. of 2/100s cotton.
This problem can also be solved with reference to the formula for calculating cover factor.

     5 tex  = 590.5 / 5  = √118 s cotton count.
As before, K  = 12.7  = n/ √118.

Therefore n = 12.7 x   118   = 138 as before.

Wish You Good Luck..................................
You Should Interested to read RELATED POST on the topics
-->

Monday, September 3, 2012

Reasons for Studying Textiles:



A study of textile engineering will show, for example, why certain textile fabrics are more physically durable and therefore more serviceable for specific purposes. It will explain why certain textile fabrics make cool wearing apparel as well as give an impression of coolness when used as decoration. The matter of cleanliness and maintenance must also be estimated before purchasing when that is an important factor.

Complete knowledge of textile engineering will facilitate an intelligent appraisal of standards and brand of apparel garments merchandise and will develop the better ability to distinguish quality in textile fabrics and, in turn, to appreciate the proper uses for the different qualities. A result, both the garments consumer merchant and consumer customer will know how to buy and what to buy, and salespeople will know how to render good service to those consumers who have not had the advantage of a formal course in textile engineering.

Great strides have been made in the textile, garment industry, and have markedly influenced our general economic growth. The prosperity and growth of related industries, such as retail apparel stores, have produced broader employment opportunities. Competition for the textile consumer’s dollar has fostered the creation of new textile fibres with specific qualities to compete with well-established textile fibers. New fiber blends have been created to combine many of these qualities into new types of yarns with new trademarks. There are also new names for textile fabrics made of these new textile fibers and yarns. New finishes have been developed to add new and interesting characteristics to textile fibers, yarn and fabrics.

This welter of creativity and the myriad of trademarks present a challenge to the textile consumer, who is sometimes knowledgeable but frequently confused. Yet one need not be. Without being overly technical, this information can be easily understood and consequently very useful to the textile consumer in business and personal to the textile consumer in business and personal life. All of this information can be adopted for such utilitarian benefits as economy, durability, serviceability and comfort, as well as for such aesthetic values as hand (or feel), texture, design and color of textile and apparel garments products.

In the study of textile engineering, the student’s initial interest will become an absorbing interest when they discover the natural fascinating of textile fabrics and their cultural associations, particularly when factual study is supplemented by actual handling of the textile and apparel materials. The subject will seem worthwhile as they become familiar with illustrative specimens and fabrics and being to handle and earn to compare the raw materials of which fabrics are made as well as the finished consumers goods.

USEFUL PURPOSES OF STUDYING TEXTILE PHYSICS:-
The useful purpose of studying textile physics are:-
1. To understand the detailed structure of fiber, yarn and fabrics
2. To understand the properties of fiber, yarn and fabrics.
3. To understand the behavior of fiber, yarn and fabrics in end condition.
4. To become able to design fiber, yarn and fabric having the required properties to meet the end-use requirements.
5. To identify faults & their causes & nature in fiber, yarn and fabrics.
You should read related post.......

Sunday, September 2, 2012

Textile physics; Introduction to textile physics

Textile physics is very important subject for textile engineers or textile related students. I want to share my experience in this site. I am going to discuss about bellow topics. So be with me for more update.

Why study or learn                                                                                                    
Why study textiles                                                                                                     
Why study textile physics                                                                                          
Textile raw materials                                                                                                  
Classification of fibers                                                                                                                                    
Engineering approach to fibers, yarns and fabrics                                                     
Importance of textile structures for Engineers                                                                      
Physical and Mechanical properties of various fibers                                    
Textile properties developed by drawing                                                                  
Design and other fiber attributes                                                                               
Essential and desirable properties of textile fibers                                                    
Influence of fiber fineness                                                                                         
Miscellaneous properties of fibers                                                                             
Flexural rigidity of textile fibers                                                                                
Fiber migration                                                                                                           
Measurement of fiber migration                                                                                

PHYSICS FOR TEXTILE FIBRE, YARN AND FABRIC
Definition of yarn                                                                                                      
Factors affecting yarn strength                                                                                  
Parameters affecting physical properties of yarn                                                       
Classification of yarn                                                                                                 
Classification of yarn based on physical and performance characteristics                
Description of yarn                                                                                                    
Idealizes structural diagram of some yarns                                                                
Continuous filament and staple yarn structure                                                          
Fundamental structural features of yarn                                                                    
Yarn designation                                                                                                        
Relative consumption of yarn                                                                                    
Sewing thread                                                                                                            
Thread sizes                                                                                                               
Thread selection                                                                                                         

Importance of twist                                                                                                   
Types and direction of twist                                                                                      
Bedding or nesting                                                                                        
Determination of twist                                                                                               
Twist effects                                                                                                              
Angle of twist and twist factor                                                                                 
Effects of twist on yarn strength, extensibility and luster                                                
Geometry of twisted yarn                                                                                          
Idealized twisted yarn geometry                                                                               
Various comments on idealize yarn geometry                                                           
Yarn size and twist multiplier                                                                                    
Optimum twist factor                                                                                                            
Fiber packing in yarn                                                                                                 
Open packing of yarn                                                                                                
Hexagonal close packing of yarn                                                                               
Real yarn packing                                                                                                      
Concentrating and disturbing factors                                                                                    
Observed packing of fibers in real yarn                                                                     
Twist in relation to yarn bending                                                                               
Relation among twist angle, twist factor and yarn count                                          
Equation for yarn diameter                                                                                        
Equation for specific volume of yarn                                                                        
Show that d=4.44 x 10-6ÖTex / Density                                                                    
Relation among twist, diameter and twist angle                                                       
Estimation of Schwarz’s constant                                                                             
Yarn luster                                                                                                                 
Twist contraction and twist retraction                                                                                   
Limit of twist                                                                                                             
Contraction factor and retraction factor                                                                    
Derivation of expression for prediction of filament strain                                        
Limitations of Platt’s low strain equation                                                                  
                                                    

Geometry                                                                                                                   
Cloth geometry                                                                                                          
Reasons for studying cloth geometry                                                                                    
Weave and weave notation                                                                                        
Crimp                                                                                                                         
Warp crimp and weft crimp calculation                                                                     
Crimp percentage and take up percentage                                                                             
Distinction between crimp % (C) and take-up %(T)                                                 
Relationship between crimp (%) and take-up (%)                                                     
Pierce’s Flexible thread model                                                                                   
Importance of crimp on fabric properties                                                                  
Fabric behavior during tensile testing                                                                        
Measurement of crimp                                                                                               
Principles of edged crimped yarn                                                                              
Crimp measuring instrument                                                                                      
Pierce’s  model for plain weave                                                                                 
Equation for pick spacing (P2) and end spacing (P1)                                                
Equation for maximum warp yarn displacement (h1) and weft yarn displacement (h2)         
Dependence of crimp percentage                                                                              
Crimp interchange                                                                                                      
Equation for crimp  interchange                                                                                
Warp and weft yarn jamming                                                                                    
Equation for warp and weft yarn jamming                                                                
Biaxial, tri-axial and balanced structure                                                                    
Equation for rigid thread model                                                                                
Why rigid tread model was introduced                                                                     
Effect of yarn crimp on fabric properties                                                                  
Concept of similar cloth                                                                                             
Cover factor                                                                                                               
Yarn and fabric strength relationship                                                                                    
Handle, drape and shear                                                                                            
Measurement of drape ability                                                                                    
Some tensile properties of fabric                                                                                                                   

Electrical properties of textiles                                                                                  
Dielectric properties of textiles                                                                                  
Polarization and related effects                                                                                 
Power factor and dissipation factor                                                                           
Measurement of dielectric properties                                                                                                                                                                                 
Preparation of a test condenser                                                                                  
Measurement of impedance by Scherring’s bridge and resonance method               
Factors influencing dielectric properties of textiles                                                   
Electrical resistance of textiles                                                                                   
Conductors, semiconductors and insulators                                                              
Conduction of electricity in textiles                                                                          
Influence of dielectric constant on ions                                                                     
Normal, excited and ionized atom                                                                             
Electrical resistance of textiles                                                                                   
Measurement of resistances of textiles                                                                      
Specimen preparation for measuring resistances of textiles                                       
Influence of various factors on resistance of textiles                                                
Static charge                                                                                                              
Explanation of static phenomenon                                                                            
Theories of static charge                                                                                            
Measurement of charge in slivers by Faraday’s cylinder and Medley’s method                     
Generation of static charge in polymers                                                                    
Amphoteric behavior of keratin                                                                                 
Piezo and pyro electric charges                                                                                                                                                       
Leakage of static charges in air                                                                                  
Leakage of static charges in perfect insulators, moderate insulators, & conductors                              
Problems of static charges in textile mills                                                                  
Minimization of static charges in textile mills                                                           
The present view about static charges in textiles      

You Should read related post for more information..................