Thursday, January 10, 2013

Knit Fabric; Different types and classification of knitted fabric

-->
Single Jersey Knits Fabric  
Knitting Machines with one needle bed and one set of needles are called jersey machines or single-knit machines. With one set of needles used for knitting and one needle bed, all needles face the same direction; all stitches are pulled to the same side of the knitted fabric. As a result, single jersey fabrics have a smooth face with a vertical grain on the right side of the fabric and a width wise grain on the back side. The knittig loops formed by the jersey machine are formed in one direction only, which gives a different appearance to each side of the fabric. The basic knit fabric produced by this knitting machine is known alternately as a plain, single knit, or jersey. The terms are interchangeable.Jersey stretches slightly more in the crosswise than the lengthwise direction. If one stitch breaks, the fabric may ladder, or run. Jersey fabrics tend to curl at the edges and are less stable than are some other types of knits. This is the result of the pressures exerted during knitting. In addition jersey knits may twist or skew after laundering, as the twisting tensions imposed during the knitting process are relaxed. 

Special finishing techniques are used to overcome these tendencies and maintain fabric stability; the principal ones use starches, gum mixtures, polyvinyl acetate emulsions, and resins. 

A great many items of hosiery, sweaters, and other wearing apparel are made from plain jersey knits. Consumer Brief 16.1 highlights one of the common uses of jersey knit fabrics: Tshirts. Plain knit fabrics can also be made into designs of two or more colors by use of a patterning mechanism that controls the selection and feeding of yarns and types of stitches to create jacquard knits. 


Double Jersey Knit Fabrics 

The term double knit is generally applied by consumers to fabrics that are, technically, double jersey fabrics. Double jersey fabrics are also made on two-bed knitting machines, but the arrangement of the needles is different from that for knitting rib fabrics. The layers of loops alternate from one side to the other, locking the two layers together. Double knit fabrics have the same appearance on both sides of the fabric, that is, exhibiting the appearance of the face or outer side of a single knit on both sides. Twice as much yarn is incorporated into double knit fabrics as into comparable single knits 


Interlock Knit fabric

Interlock knits are produced on a special machine that has alternating long and short needles on both beds. Long and short needles are placed opposite each other. Long needles knit the first feeder yarn; short needles knit the second feeder yarn. The fabric created is an interlocking of two 1 X 1 rib structures. The resulting fabric, like double knit fabrics, is thicker than single knit fabric, and more stable in the width wise direction. Interlock fabrics have been traditionally used for underwear. They are produced more slowly than are other rib knits and are generally made in plain colors or simple patterns because the addition of pattern slows down the manufacture even further 


High Pile Fabrics 

High-pile fabrics, such as imitation furs and plushes, are usually knitted by a jersey machine. While the knitting is taking place, a sliver of staple fiber is fed into the machine. These fibers are caught in the tight knit and are held firmly in place. Although any staple fiber can be used for the pile, the greatest quantity of these fabrics are made with acrylic and modacrylic fibers in the pile. By using staple fibers of varying lengths, adding color through fiber dyeing or printing on the surface of the pile, and by shearing or brushing the pile, an enormous variety of effects can be achieved. The use of knitted pile fabric ranges from excellent imitations of furs, such as leopard, tiger, mink, or mouton, to colorful pile outerwear, coat linings, or pile carpet fabrics.
-->

Gauge and Quality; Knitting machine element to produce knit fabric

-->
Gauge and Quality 
The size of the needle and the spacing of the needles on knitting machines determine the number and size of the knit stitches and their closeness those are known as knitting element. Each wale is formed on one needle. The number of needles is equal to the number of Wales. The closeness of the stitches determines whether a knit fabric will be lightweight and open or heavier and more dense. The term gauge is used to describe the closeness of knit stitches. Gauge is the number of needles in a measured space on the knitting machine. Higher-gauge fabrics (those with more stitches) are made with finer needles; lower gauge fabrics are made with coarser or larger needles. 

The term cut is also used to designate the number of needles per inch in the needle bed of a circular weft knitting machine. To describe the stitch density of a single or double knit fabric, the fabric may be designated as an 18-, 20-, 22-, or 24cut fabric. The higher the cut, the closer the stitches; the lower the cut, the coarser the fabric. 

Varying types of knitting machines measure gauge over different distances on the machine. For example, circular knit hosiery measures the number of needles in 1.0 inch, fullfashioned knitting in 1.5 inches, and Raschel knits in 2.0 inches. 

Because of these differences, it is best to keep in mind the generalized principle that the higher the gauge, the closer the stitches. 

The quality of needles used in manufacturing knit goods is related directly to the quality of the fabric produced. Needles of uneven size and quality will produce knit fabrics with unevensized stitches and imperfect surface appearance. 

In warp knits, those knits in which the yarns interlace in the long direction, one or more yarns are allotted to each needle on the machine, and those yarns follow the long direction of the fabric. For weft knits, those in which the yarns interlace crosswise or horizontally, one or more yarns are used for each course, and these yarns move across the fabric. In weft knits, one yarn may have from twenty to several hundred needles associated with it. To summarize, weft knits can be made with one yarn, but warp knits must have a whole set of warp yarns, that is, one or more for each needle. 

Once the basic distinction between warp and weft knits has been made, further subdivisions of knit classifications are usually based on the types of machines used in their production. The majority of knit fabrics are named after the machines on which they are constructed. For this reason, the discussion of knitted fabrics that follows is organized around the types of machines used in manufacturing knit fabrics and the types of knit fabrics made on these machines. 

1. Flat or circular jersey, or single knit, machine: one needle bed and one set of needles. 
2. Flat or circular rib machine: two needle beds and two sets of needles. 
3. Flat or circular purl, or links-links, machine: two needle beds and one set of needles.
-->

Loop Formation in knit fabric structure

Loop Formation 
The spring beard needle is formed from one piece of thin wire. One end of the needle is drawn into thinner dimensions and is curved to form a hook. The flexible outer side of the hook can be pressed against the stem of the needle to close the hook for sliding a formed loop off and beginning a new loop. In 1847 Matthew Townshend invented a different type of hook known as the latch needle, which has come to be the most widely used type of needle. Its operation s similar to that of the spring beard needle, except that instead of having to mechanically press the flexible wire of the needle closed so that the forming yarn loop will not slide off, a latch closes to hold the yarn in place. 

1. The old loop is held on the stem of the needle. The latch is open (a). 
2. The hook grasps the yarn to begin forming a new loop (b). 
3. The needle falls, the old loop rises, closing the latch of the needle (c). 
4. The old loop is cast off (d and e). 
5. The needle tises, and the new loop slides down to the stem of the needle, pushing the latch open again, and the needle is ready to repeat the cycle (f).

Loop formation in knit fabric

Yet a third type of needle, the compound needle, is used almost exclusively for warp knitting. The compound needle has two components, a tongue and a hook Its motion is as follows: 

1. The old loop encircles the hook; the tongue is in such a position as to leave the hook open. 
2. Both tongue and hook rise; a new yarn is fed to the hook. 
3. Both tongue and hook descend, but the tongue descends more slowly, thereby closing the hook. 
4. As the needle descends, the held loop slides off, forming a new loop. 
5. The needle returns to its initial position, the hook ascending more rapidly, thereby opening the hook again. 

For weft knitting with either needle type, a cam system provides the action for lifting the needles as the yarn is fed in. A small projection called a butt is located at the bottom of the needle. The butt is held in a groove formed by a system of cams or shaped pieces. The movement of the butt in the grooves between the cams causes the needle to rise and fall. 

The engaging by the needle of a new piece of yarn is called feeding. Devices called feeders are located to introduce the yarn to the needles. The number of feeders can vary, but obviously the more feeders a machine has, the higher will be the speed of fabric forming on the machine, since each needle produces a loop each time it is activated and if many needles are activated more frequently, many courses can be formed at the same time. 

Another important element of some knitting machines is the sinker. The already formed fabric may need to be controlled as the subsequent knitting action takes place. A thin steel device called the sinker may be used to hold the fabric as the needle rises, support the fabric as the needle descends, and push the fabric away from the needle after the new loop has been formed. Sinkers are generally mounted between the needles. Some machines, however, do not use sinkers but instead use the tensions placed on the completed fabrics for control.